Wind-Wave Tides Wind Sase site, 1979 For For Raleigh W

WIND-WAVE CLIMATOLOGY AND

WIND-TIDES FOR FORT RALEIGH
WAVE-GAUGE SITE, 1979

By C. Ernest Knowles

> Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, North Carolina 27650

This work was sponsored by the Office of Sea Grant, NOAA, U.S. Department of Commerce, under Grant No. NA79AA-D-00048 and the North Carolina Department of Administration. The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright that may appear hereon.

Department of Marine, Earth and Atmospheric Sciences Contribution No. 81-38

UNC Sea Grant College Publication UNC-SG-WP-81-8
December, 1981
LIST OF FIGURES AND TABLES. ii
INTRODUCTION 1
THE EXPERIMENT. 1
a. Data Collection and Analysis 1
b. Wave-Gauge Site Characteristics 7
RESULTS 8
a. Wave Climatologies 8
b. Wind Tides 11
SUMMARY AND CONCLUSIONS 12
ACKNOWLEDGEMENTS 12
REFERENCES 14
DISSEMINATION OF RESEARCH RESULTS 15
a. Papers Presented at Scientific Meetings. 15
b. Manuscripts submitted 15 15
APPENDICES. A-1
A. Wave recording system. A-1
B. Monthly joint-probability distribution tables. B1-B12C. Monthly wind stick-plots, wind tidesand time histories of H_{s} and T_{s}. C1-C12

Figure 1.

Figure 2.

Figure 3.

Figures C1-C11. Monthly wind-stick plots, wind-tides and time
Monthly wind-stick ${ }^{\text {plot }}$ lot
histories of H_{s} and T_{s}.

Table 1.

Table 2.
Albemarle Sound showing restricted-fetch basin and Fort Raleigh wave-gauge site.

Topographic and bathymetric chart of SE Albemarle basin adjacent to Fort Raleigh wavegauge site.

Datalogger and test oscilloscope mounted in watertight enclosure.

Summary of 1979 wave data for Fort Raleigh wave site. Label TP is the data tape number, TI is the EST of the first file and TO the EST of the last file recorded, and NF the number of files on each tape. The sampling interval is three hours and the number of samples/file is 1024 for all data. ND means no data were recorded.

Summary from Appendix B of monthly mean H_{8} and T_{8} values (and their standard deviations) for 1979 at the Fort Raleigh wave site. Label NC represents the number of non-calm and C the number of calm observations (file numbers) included in the means. Also included are the modal and maximum ranges of Hs and Ts. Dimensions are H_{s} (cms) and T_{s} (secs).

Monthly joint-probability distribution tables of H_{8} and T_{8}.

INTRODUCTION

The wave data presented and discussed in this report were recorded almost continuously from January 26 to December 31, 1979 by a pressure transducer mounted 30 cm above the bottom (in water with a mean depth of about 100 cm) and about 60 m offshore immediately adjacent to the Fort Raleigh National Historic Site (Figures 1 and 2). The data were collected as part of a shoreline stabilization project funded by the U.N.C. Sea Grant Program and conducted through and with the close cooperation of the Superintencent of the Fort Raleigh National Historic Site and his staff. Correlation of wave energy data with the success in using marine grasses to stabilize shorelines will be the subject of a separate report.

Specific results from the wave portion of this study have been published as a referred working paper (Knowles, 1981a), presented at scientific meetings (Knowles, 1979, 1980a, 1980b, 1981b, 1981c, 1981d), and submitted for journal publication (Knowles, 1981e, 1981f).

This technical, summary report will deal specifically with the monthly wave climatologies and wind tides at the Fort Raleigh site for 1979; other data reports for Fort Raleigh (1980) and for Bogue Sound and Neuse River, N.C. sites (1979) are in preparation.

THE EXPERIMENT

Data Collection and Analysis

Data were recorded digitally by file number on a cassette tape at a rate of five samples/sec every three hours with a sample length of 1024 using the data logger shown in Figure 3 (see Appendix A for details of wave recording system, and Table 1 for a summary of the dates, times and numbers of files of collected data). Power spectral densities, $F_{p}(f)$, were obtained for each file from the pressure-data time series using a FFT algorithm and convolution averaging with 34 degrees of freedom for $f<f c$ (where $f_{c}=f_{m}+16 \Delta f, f_{m}$ was the spectral peak frequency, and Δf was the frequency interval) and 50 degrees of freedom for $f>f_{c}$; the 90 percent confidence interval factors were ($1.57,0.70$) and ($1.44,0.74$), respectively.

Surface-wave spectral densities, $F(f)$, were estimated from the subsurface-pressure densities using the small-

amplitude wave theory attenuation compensation-coefficient, cosh kh/cosh kd, modified by Grace's (1978) empirical
correction factor, $n(f) ; 1 . e$.

$$
\begin{equation*}
F(f)=\left[n(f) \frac{\cosh k h}{\cosh k d}\right]^{2} F_{p}(f) \tag{1}
\end{equation*}
$$

where $k(=2 \pi / L)$ is the local wave number, L the local wavelength, h the local depth and d the pressure transducer height above the bottom. The empirical correction factor, $n(f)$, was determined by Grace (1978) from wavetank measurements, but Knowles (1980b, 198la) showed that Grace's equation agrees rather satisfactorily with other data as well (e.g. Hom-ma, et al, 1966 -wavetank data; Esteva and Harris, 1970 -lower gauge field data; and Tubman and Suhayda's, 1976 -field data). The parameter kh was estimated from f by using an iteration scheme (cf. Knowles, 1981a) to find the root of the modified linear-theory dispersion relation

$$
\frac{(2 \pi f)^{2} h}{g}=k h \tanh k h .
$$

Wave climatology has been presented as a joint-probability distribution of significant wave height (in cm) derived as an integral quantity from the corrected wave spectrum, i.e.

$$
\begin{equation*}
H_{s}=4 \mathrm{E}^{1 / 2}, \tag{3}
\end{equation*}
$$

where,

$$
\begin{equation*}
E=\int F(f) d f \tag{4}
\end{equation*}
$$

is the wave height variance, and $F(f)$ is estimated from (1); and significant wave period (in secs) defined by Goda (1974) as

$$
\begin{equation*}
\mathrm{T}_{\mathrm{s}}=\frac{0.937}{\mathrm{f}_{\mathrm{m}}} \tag{5}
\end{equation*}
$$

Hourly wind data for use in the wind-tide study were obtained from the Cape Hatteras Weather Facility. Though this station is nearly 70 km from the Fort Raleigh site, its data

Figure 3. Datalogger and test oscilloscope mounted in watertight enclosure.

Table 1. Summary of 1979 wave data for Fort Raleigh wave site. Label TP is

TP	Date	TI	Date	T0	NF	TP	Date	TI	Date	TO	NF
01	01/26	1625	02/09	1325	112	14	07/22	ND	-	-	-
02	02/09	1625	02/23	1025	111	15	08/15	ND	-	-	-
03	02/23	1430	03/09	1430	113	16	09/05	1740	09/08	1140	23
04	03/16	1730	03/25	1730	72	17	09/14	1840	09/28	1240	111
05	03/25	1840	04/06	1240	95	18	09/28	1540	10/10	1840	98
06	04/06	1840	04/20	1240	111	19	10/15	1440	10/26	1440	89
07	04/20	1840	04/28	1840	65	20	10/26	1740	11/09	1140	111
08	04/28	1855	05/12	2155	114	21	11/09	1900	11/23	1300	111
09	05/16	1134	05/30	1434	114	22	11/23	2200	12/01	1000	61
10	06/01	1434	06/14	1434	105	23	12/01	1600	12/15	1600	113
11	06/15	ND	-	-	-	24	12/17	1900	12/28	1000	86
12	06/23	1405	07/06	0805	103	25	12/28	1600	12/31	2200	27
13	07/06	1516	07/20	1516	113						

compares very well with data from the U.S. Coast Guard Station at Oregon Inlet (after winds are scaled from the 19 m height there to the 10 m height recorded at Cape Hatteras). Singer and Knowles (1975) demonstrated also that Cape Hatteras wind data agreed very well with data from a weather station set up near Stumpy Point (Figure 1). It is recognized that with the passage of a slow moving front, for instance, there may be a several hour lag or a lead time between these stations; this may result in some uncertainty in the interpretation, but should not affect the trend of the wave and wind-tide data. Water levels at the site ranged from 60 cm to 150 cm and were estimated for each data file by taking the mean of the sensor time series and adding it to the transducer height d (see appendix A for sensor calibration details that relate total pressure directly to water depth).

Wave-Gauge Site Characteristics

The basin adjacent to the wave gauge is highly restricted (radial distances from site to shoreline are unique). The longest fetch (40 km) is to the NW , but the waves generated there will not be as large as they could be, given the fetch length, because as can be seen in Figure 2, Colington Shoal (with a nearly constant 1.2 m depth) partially shields the site from the deeper basin (mean of 4.5 m with max depth of 5.5 m) to the NW. The smaller basin N and E of the site has only a five to seven kilometer fetch and no comparable shoal shielding it; the waves generated at this fetch generally will not be as large as those from the NW. The smaller basin has a nearly constant depth of 2.75-3.0 mith a rather steep (1/20) slope from that depth to the shelf break at the 1.83 m contour line; the slope from the break to the site is about $1 / 950$. Southerly winds (from the lee side of Roanoke Island) usually generate very low energy waves and do affect significantly the water level at the site, as will be seen later.

The presence of currents at the sensor depth and location can affect the determination of kh (cf. Knowles, l98lf, for details) by introducing an advective frequency component (Doppler shift) on the left side of (2). No current measurements were made during this study, but for the same months in 1975, Singer and Knowles (1975) found that currents, when present near the shelf break adjacent to the site, were very slow (< five cm/sec), generally parallel to the shelf contour (which is nearly one kilometer from the site) but otherwise erratic in direction; they therefore would not likely influence the waves recorded at the site. The only location where Singer and Knowles (1975) measured currents that might have altered the waves before they reached the site was in the deep channel between Colington Shoal and Caroon Point (Figure
2). In response to sustained NW winds, currents of nearly one $\mathrm{m} / \mathrm{sec}$ were recorded with a general direc tion toward the $S E$. Since these same winds also would generate waves near that axis, the waves could be lengthened slightly and reduced in amplitude before reaching the site, but certainly could not affect the estimation of $k h$.

According to Riggs and o'Connor (1974), the sediment near the site consists of sand that is about three meters thick and graded from coarse ($0.5-1.0 \mathrm{~mm}$) near shore to medium (0.25 -0.5 mm) at midshelf (about 400 m from the site) and fine ($<$ 0.25 mm) beyond the shelf break in the deeper interior basin and on Colington Shoal. Shemdin et al (1980) demonstrated that for finite depths, wave energy could be dissipated in course sand by percolation with a damping coefficient of $0 \sim 10^{\circ} / \mathrm{sec}$, or by bottom friction when the mean sand diameter is in the range $0.1-0.4 \mathrm{~mm}$ and percolation is inhibited. So, it is likely that these two mechanisms had an active role in wave dissipation in this study.

RESULTS

The joint-distribution tables of H_{s} and T_{s} are included in Appendix B for an eleven-month period (no data were collected in August) of 1979; Table 2 has been included in this section to summarize those results.

The monthly wave climatologies and wind-tide results were obtained by combining the files shown in Table 1 into calendar months for analysis and plotting. In some instances there were time gaps between files during the month; while this would not affect the joint-probability distributions, it could complicate the intrepretation of the wind-tide plots. When the gap was greater than a few hours, a vertical line was included on the wind-tide plots to emphasize the time break and the time axis was adjusted accordingly.

Wave Climatologies

Table 2 is a summary of the monthly wave climatologies of H_{s} versus T_{s} included in Appendix B, and contains the number of non-calm and calm observations (when the wave energy was so low that no spectral peak could be detected), the monthly mean and standard deviation of H_{s} and T_{S}, and the modal (largest number of occurrences for the month) and maximum (may be only one observation) H_{s} and T_{s} joint-ranges.

The small number of observations obviously biased upward the January data, because the winds during the six days mostly

Table 2. Summary from Appendix B of monthly mean H_{S} and T_{S} values (and their standard deviations) for 1979 at the Fort Raleigh wave site. Label NC represents the number of non-calm and C the number of calm observations (file numbers) included in the means. Also included are the modal and maximum ranges of H_{s} and T_{s}. Dimensions are H_{s} (cms) and T_{s} (secs).

Observations				Means/s.d.			Modal		Maximum	
Month	NC	C	H_{S}	s'd.	T_{s}	s.d.	H_{S}	$\mathrm{T}_{\mathbf{s}}$	H_{3}	T_{3}
Jan	43	0	26.8	10.5	2.1	0.4	35-40	2.25-2.49	40-45	2.50-274
Feb	208	16	20.0	10.8	1.8	0.5	05-10	1.20-1.49	45+*	3.00-3.44
Mar	187	4	17.8	7.1	1.7	0.4	15-20	1.50-1.74	35-40*	2.75-2.99
Apr	218	3	16.2	9.0	1.8	0.4	10-15	1.50-1.74	45+*	2.75-2.99
May	209	1	14.6	7.6	1.8	0.4	05-10	1.20-1.49	35-40*	2.50-2.74
Jun	163	1	16.5	8.5	1.8	0.4	10-15	1.50-1.74	45+*	2.75-2.99
Jul	156	1	13.4	6.6	1.6	0.4	05-10	1.20-1.49	40-45*	2.25-2.49
Aug						NO DA	ATA			
Sept	152	1	20.0	8.3	1.8	0.4	20-25	1.75-1.99	40-45*	2.50-2.74
Oct	208	2	15.5	8.8	1.8	0.4	05-10	1. 20-1.49	45+*	2.75-2.99
Nov	233	8	18.3	11.5	1.8	0.4	05-10	1.20-1. 49	45+*	2.75-2.99
Dec	213	13	15.5	9.2	1.8	0.4	05-10	1.20-1.49	40-45	2.50-2.74

*single observations
were from the $N W$ with speeds greater than five m/sec (i.e. the aver ages of H_{s} and T_{s} were not reduced greatly -there were only a few instances where southerly winds generated very low energy lee-side waves). The January data will be disregarded in most of the discussion that follows.

One remarkable result evident from the monthly wave climatologies is that the mean T_{s} is a nearly constant 1.8 sec , and the standard deviation is an almost constant $\pm 0.4 \mathrm{sec}$ (about 20 percent of the mean). The modal and maximum ranges (and a close examination of the Tables in Appendix B) suggest, however, that this finding does not describe fully the monthly changes in T_{s}. The modal range is less than the mean in every month except September, and the maximum ranges of T_{s} are, except for July no smaller than $2.50 \leqslant \mathrm{~T}_{\mathrm{s}} \leqslant 2.74$; the greatest maximum range ($3.00 \leqslant T_{s} \leqslant 3.44$) occurs only once (in February).

The mean H_{s} show more expected seasonal variation, and the larger standard deviations (≈ 50 percent of the mean H_{s}) are, in part, the result of the greater variability of the integral properties of the spectrum; i.e., in general, f_{m} (and therefore, T_{s}) is easier than E to estimate. According to U.S. Naval Weather Service Command (1970) data, the more energetic northerly winds are usually predominant during the late fall, winter and early spring, so the more energtic waves (i.e. those having a larger wave-height variance E) should be present then also. The data in Table 2 tends to support this, with September, November and February having the largest mean H_{s} and May and July the smallest. The same seasonal trends are evident for the standard deviations of H_{s}, which suggests that for 1979 at least, the summer months have longer periods of southerly winds (and their associated lower-energy, lee-side waves) and that the northerly winds not only have less speed but also less directional variability than the fall-winter winds. These trends are evident in the stick-plots contained in Appendix C; the May and July northerly winds were primarily from the shorter fetch NE direction, while November and February had winds that included the longest-fetch NW and the shortest fetch NE directions.

Finally, the distribution of H_{s} and T_{s} in the joint-probability intervals may be affected directly when the water depth at the site drops below about 78 cm under strong NE winds; this is evident in the wind-tide plot for February in Appendix C, where H_{s} and T go to zero as the water depth steadily drops to a low of about 55 cm . Knowles (1981f) demonstrated that this virtual elimination of waves at these depths was the result of a rapid increase in non-linear interactions as depth decreased. More will be said about the reasons for the depth decrease in the next section.

The wind-tide plots are included in Appendix C; this section will summarize the effects that the winds have on the water level at the Fort Raleigh site.

As can be seen in Figures l and 2, Fort Raleigh is situated on the northern end of Roanoke Island, with the large Albemarle and Pamlico Sounds immediately north and south, respectively, with the very shallow Roanoke Sound to the east and the relatively deep (s four meter) Croatan Sound to the west.

In general, winds from the north to east cause the water level to drop (water exits Albemarle Sound via Croatan Sound) with a rate dependent on wind speed and with a lag time of three to nine hours he wind onset to a significant drop in depth. This effect is seen clearly in the wind-tide plots for almost every month; e.g., some of the larger drops are on February 6-7 and 17-18, March 21 and $27-28$, May 5, June 24-26, July 4-5, September 17 and November 3-4. The major drop (discussed in the last section) on February 17-18 is a dramatic example of the importance of NE winds in decreasing the water level. The winds shifted from westerly to just a few degrees east of north during the late morning on February 16 and the water depth began to decrease almost immediately (within three hours), leveled off slightly for nine hours, then continued its decline as the winds increased slightly until early morning on February 18, when an increase in speed and a shift to NE caused a dramatic drop in depth six hours later; i.e. even though the water level already had been reduced from about 110 to 75 cm by northerly winds the depth was further reduced by 20 cm when the winds shifted to $N E$.

Winds from the NW sometimes cause a gradual rise in water level; but then, if winds persist for >24 hours with wind speeds > eight $\mathrm{m} / \mathrm{sec}$, the water level will eventually drop (see January 28-29 plot and after a slight relaxation in the winds, the February 1-3 plot) probably existing via the narrow dredged channel in Roanoke Sound. If NW winds, however, follow directly after southerly winds (with speeds $>$ five $m / s e c$) the water level usually will drop rather than rise, because southerly winds will have already caused the water level at the site to rise above normal (water will have returned to Albermarle Sound via Croatan Sound), causing a slight pressure head to be established in Albemarle Sound.

The increase in water level can be dramatic upon passage of a front when southerly winds follow immediately after NE winds (see February 18-19 plot); the increase is the result of the changing wind direction, but just as importantly it is also
the result of the rebound of water held in Croatan and Pamlico Sounds by the NE winds.

SUMMARY AND CONCLUSIONS

That significant erosian occurs on the sandy banks of northern Roanoke island is self-evident; a sea-wall has been constructed to protect the important outdoor theater and historic site at Fort Raleigh. Marine grasses have been unsuccessful in stabilizing the shoreline, at least in part because the wave energy there is too great. It is evident from this study, however, that wind-tides are just as important as wave heights in causing the erosion. Most shoreline damage will occur when northerly winds with speeds greater than eight $\mathrm{m} / \mathrm{sec}$ follow an extended period of southerly winds; the high wind-tide will allow the higher energy waves to attack the shoreline at a greater elevation (see the plots of H_{s} in Appendix C for May 3-5, June 11, July 4-5, September 15-18, October 8-11, November 1-4, and November 30 -December 3). Before the new seawall was built, the waves riding on these high wind-tides would pass over the seawall and erode the shoreline behind it. The same "drowning" of the marine grasses reduced their effectiveness and made the establishment of a dense protective cover impossible.

An examination of the stick-plots in Appendix C show that for 1979 the northerly winds were primarily from the N to NE. It was shown earlier that winds generating waves from the NE also cause the water level to decrease, a "self-correcting factor" that mitigates the waves erosive capability by reducing the wave elevation on the shoreline and dissipating more of the wave energy by shoaling. It seems likely that the most destructive waves are those generated by N winds that arrive in conjunction with high wind-tides; because the water level drops more slowly than when winds are from the NE, and the waves have more time at the higher elevations of the shore-front to do their damage.

ACKNOWLEDGEMENTS

Financial support for this study was provided by the NOAA Sea Grant Program, UNC Grant \#NA79AA-D-00048B and by the N.C. Department of Administration. I wish to acknowledge Mr. Bill Harris, Superintendent of the Fort Raleigh National Historic Site and Clay Gifford, his resource management specialist, for providing the opportunity to conduct the study. A very special thanks to Mr. Pat Crosland, one of the many naturalists at Fort Raleigh who provided me with invaluable assistance in changing
data tapes between the monthly battery-servicing trips and in helping me relocate and calibrate the pressure sensor; the success of this data collection effort was, to a very large extent, the result of his help.

Esteva, D., and D. L. Harris, 1970: Comparison of pressure and staff wave gauge records. Proc. 12 th Coastal Eng. Conf., Washington, D.C., 101-116.

Grace, R. A., 1978: Surface wave heights from pressure records. Coastal Eng., 2, 55-67.

Goda, Y., 1974: Estimation of wave statistics from spectral information. Proc. Int. Sym. Ocean Wave Meas. and Anal., New Orleans, LA., Sept., 320-337. Hom-ma, M., K. Horikawa, and S. Komori, 1966: Response characteristics of underwater wave gauge. Proc. 10th Coastal Eng. Conf., Tokyo, Japan, 99-114.

Knowles, C.E. 1981a: Estimation of surface gravity waves from subsurface pressure records for estuarine basins. UNC Sea Grant College Pub. UNC-SG-WP-81-6, 18p.

Riggs, S. R. and M. P. 0^{\prime} Connor, 1974: Relict sediment deposits in a major transgressive coastal system. UNC Sea Grant Rpt.-SG-74-04, 37p.

Shemdim, O. H., S. V. Hsiao, H. E. Carlson, K. Hasselmann, and K. Schulze, 1980: Mechanisms of wave transformation in finite-depth water. J. Geophys. Res., 85(C9), 5012-5018.

Singer, J. J. and C. E. Knowles, 1975: Hydrology and circula-tion patterns in the vicinity of Oregon Inlet and Roanoke Island, N.C. UNC Sea Grant Rpt. UNC-SG-75-15, 171p.

Summary of synoptic meteorological observations, U.S. Naval Weather Service Command, Vol. 3, May 1970.

Tubman, M. W., and J. N. Suhayda, 1976; Wave action and bottom movements in fine sediments. Proc. 15 th Int. Conf. on Coast. Eng., 1168-1183.

DISSEMINATION OF RESEARCH RESULTS

a. Papers Presented At Scientific Meetings

1979 Knowles, C.E. Wind wave analysis and prediction in large estuaries. Trans. AGU, $60(46), \mathrm{p} .847$.

1980a Knowles, C.E. Equilibrium-range slope for shallow water gravity-wave spectra. Trans. AGU, 61(17), p 262.

1980b Knowles, C.E. On an empirical attenuation factor for estuarine, wind-driven gravity-waves. Trans. AGU, 61 (46), p. 987.

1981b Knowles, C.E. Wind-wave spectra and the effects of finite-depth. IUCRM Symposium on Wave Dymamics and Radio Probing of Ocean Surface, Miami Beach, FL, May, 1981.

1981c Knowles, C.E. Wind-wave growth and atmospheric stability in a large, shallow-water estuary. Trans. AGU, 62(17), p. 313.

1981 d Knowles, C.E. Transducer height selection to avoid a maximum compensation factor cut-off in estimating surface gravity-waves from subsurface fluctuations. Trans. AGU, 62(45), p. 930.
b. Manuscripts Submitted

198le Knowles, C.E. On the effects of finite-depth on wind-wave spectra: l. A comparison with deep-water equilibrium range slope and other spectral parameters. Submitted to Jour. Phys. Ocean.

1981f Knowles, C.E. On the effects of finite-depth on wind-wave spectra: 2. Energy overshoot and the role of $k_{p} h$ in wave growth. Submitted to 0.M. Phillips for inclusion in IUCRM Symposium proceedings.

Appendix A. Wave recording system.

The wave recording system consisted of a bottom-mounted, highly sensitive, Gulton pressure-transducer that converted the subsurface pressure-fluctuations to a frequency-modulated signal that was transmitted to the datalogger by a three-conductor cable.

The datalogger contained a clock (to regulate the sampling interval, turn on the tape recorder and determine the sample length, a Memodyne incremental digital tape recorder, and an electronic package that digitized the signal at a rate of five samples/sec and wrote it serially onto the tape.

The datalogger and four 12 Vdc batteries were housed in a watertight NEMA-type enclosure and mounted on a post buried in the ground on the shoreline adjacent to the anchored transducer; this system and a portable oscilliscope used for adjusting the datalogger are shown in Figure 3. The system was calibrated with water depth from the surface to a depth of 1.52 m by lowering the transducer through a graduated tube and recording 32 samples of the frequency output on a cassette tape. These frequency samples were averaged for each depth increment of 15.2 cm (6 inches), plotted versus depth and a 1 inear calibration line established. Atmospheric pressure at the time of calibration was recorded and an equation for the slope of the line derived. This method of calibration gives the frequency output from the transducer as a direct function of depth without having to calculate the total pressure.

Appendix B. Monthly joint-probabilfty distributions tables.

Wave climatologies for all months of 1979 (except August) at the Fort Raleigh site are included in this appendix, in the form of eleven joint-probability distribution tables. The significant heights H_{s} and periods T_{s} were calculated from the empirically-compensated surface spectrum using (1), (3), (4) and (5) and then sorted into the intervals shown in the tables. The calm observations (i.e. those where wave energy was so low that a spectral-peak frequency could not be determined) were not included in the determination of the means or standard deviations. All numbers shown in the intervals are in parts/thousand.

$$
\text { WAVE CLIMATOLOGY fOR FT RALEIGH NC FOF PEFIOD FROM26-31 JAN } 79
$$

A FUNTION
SIG. PERIOD

WAVE CLIMATOLOGY FOR FT RALEIGH N C FOR PERIOD FROM 1 - 28 FEB 79
DISTRIGUTION OF SIG. HEIGHTCIN OBS
DISTRIGUTION OF SIG. HEIGHTCIN OBSERVATICNS PER 1000 OBSERVATIONSI AS A FUNCTION OF SIG. PERIOD
NON-CALM CONDITION OBSERVATIONS: 208
DATA OBTAINED FROM SET OF DIGITAL BOTTOM-MO
THAT HAS BEEN CORRECTED FOR
001sㅋd
(SECS)
02-05
$\begin{array}{rr}2-05 & 05-10 \\ 9.6 & 115.4 \\ 0.0 & 33.7 \\ 0.0 & 4.8 \\ 0.0 & 4.8 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 9.5 & 158.7 \\ 9.6 & 168.3 \\ 4.6 & 7.4\end{array}$
$10-15$
91.3
76.9
33.7
9.6
0.0
0.0
0.0
0.0
0.0
0.0
214.5
379.8
12.2

STANDARD DEVIATIGN OF WAVE HEIGHT: 10.77 CM
AVERAGE
VARIANCE
STANDARD
WAVE CLIMATOLOGY FOR FT RALEIGH NC FOR PERIOD FROM 1 - 31 MAR 79 JISTRIBUTION OF SIG. HEIGHT (IN OESERVATIONS PER 1000 OBSERVATIONSI AS A FUNCTION OF SIG. PERIOD
(CALMS NOT INCLUDEO IN AVE., VAR. OR ST.DEV.)
 NON-CALM CONDITION OBSEFVATIONS: 209 CALM CONDITION OBSERVATIONS NOT INCLUOED: I
DATA OBTAINEO FROM SET OF DIGITAL EOTTOMGMOUNTED PRESSURE TRANSDUCER RECORDS TOTALING SQ. 7 HGURS O FOR PRESSURE ATTENUATION EEFGRE ANALYSIS
HEIGHT (CM)

20-25	25-30	30-35	35-40	40-45	45*	TCTAL	CUN. TOTAL	$\begin{aligned} & \text { FRD } \\ & \text { AVG } \end{aligned}$
0.0	0.0	0.0	0.0	0.0	0.0	220.1	220.4	1.32
9.6	0.0	0.0	0.0	0.0	0.0	30E. 2	¢26.3	1.63
19.1	4.8	$4 \cdot 8$	4. ${ }^{\text {a }}$	0.0	0.0	129.2	655.5	1.85
28.7	28.3	14.4	4.8	0.0	0.0	191.4	846.9	2.13
4.8	14.4	9.6	0.0	0.0	4.8	119.6	Ste.	2.35
4.8	9.6	0.0	4-8	0.0	0.0	33.5	1000.0	2.58
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1000.0	0.0
$\begin{array}{r} 67.0 \\ 885.2 \\ 22.7 \end{array}$	$\begin{array}{r} 67.0 \\ 952.2 \\ 27.9 \end{array}$	$\begin{array}{r} 28.7 \\ 980.9 \\ 32.8 \end{array}$	$\begin{array}{r} 14.4 \\ 995.2 \\ 36.3 \end{array}$	$\begin{array}{r} 0.0 \\ 995.2 \\ 0.0 \end{array}$	$\begin{array}{r} 4.8 \\ 000.0 \\ 50.6 \end{array}$			

VARIANCE OF WAVE PERIOD: 0.15 SEC SO sec STANOARD DEVIATION OF WAVE PERIOD: O (CALMS NOT INCLUDED IN AVE**VAR* OR ST*DEV.)
DISTRIGUTION OF SIG. HEIGHTYIN OBSERVATIONS PER 1000 OBSERVATIONS) AS A FUNCTION OF SIGS PEFIOO NON-CALM CONOITION OBSERVATIONS: 163 GALM CCNDITION OESERVATIONS NOT INCLUDED: 1 I
DATA DBTAINFD FROM SET OF DIGITAL GOTTGM-MOUNTED PRESSURE TRANSOUCER RECORDS TOTALING AG.G HOURS
$3 \exists s^{\circ}$ e<

$$
6 * \cdot 1-0 z \cdot 1
$$

$$
1.50 \cdot 1.74
$$

$$
2 \cdot 00-2 \cdot 24
$$

$$
2.50-2.74
$$

$$
2.75-2.99
$$

$$
3.00-3.44
$$

$$
3.25-3.49
$$

$$
\because 0
$$

os

$$
\begin{gathered}
2-05 \\
0.0 \\
0.0
\end{gathered}
$$

$$
0.0
$$

$$
0-0
$$

$$
6.1
$$

$$
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
$$

$$
\begin{aligned}
& 95-10 \\
& 98.2
\end{aligned}
$$

$$
\begin{aligned}
& 98.2 \\
& 42.9
\end{aligned}
$$

$$
30.7
$$

$$
\begin{array}{r}
42.9 \\
6.1
\end{array}
$$

$$
6.1
$$

$$
6.1
$$

$$
0.0
$$

$$
\begin{array}{ll}
0.0 & 0.0 \\
0.0 & 0.0
\end{array}
$$

$$
0.0 \quad 0.0
$$

DEVIATION

$$
\begin{array}{r}
10-15 \\
116.6 \\
135.0 \\
24.5 \\
36.8 \\
6.1 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
319.0 \\
552.1 \\
12.4
\end{array}
$$

$$
42.9
$$

$$
36.8
$$

$$
42.9
$$

$$
6.1
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$ O FOR PAESSURE ATTENUATIGN GEFERE ANALYSIS

$$
\begin{array}{r}
0.0 \\
12.3
\end{array}
$$

$$
85.9
$$

$$
55.2
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
\begin{array}{r}
159.5 \\
840.5 \\
22.2
\end{array}
$$

$$
\begin{array}{r}
25-30 \\
0.0 \\
0.0 \\
30.7 \\
36.8 \\
12.3
\end{array}
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
\begin{array}{r}
79.8 \\
920.2 \\
27.1
\end{array}
$$

$$
\begin{array}{rrrrrrr}
30-35 & 35.40 & 40-45 & 454 & \text { TOTAL } & \text { TUMAL } & \text { PRO } \\
0.0 & 0.0 & 0.0 & 0.0 & 257.7 & 257.7 & 1.34 \\
0.0 & 0.0 & 0.0 & 0.0 & 227.0 & 484.7 & 1.61 \\
6.1 & 0.0 & 0.0 & 0.0 & 220.9 & 705.5 & 1.88 \\
36.8 & 6.1 & 0.0 & 0.0 & 220.9 & 926.4 & 2.12 \\
6.1 & 6.1 & 6.1 & 0.0 & 55.2 & 981.6 & 2.39 \\
6.1 & 0.0 & 0.0 & 0.0 & 12.3 & 593.92 .66 \\
0.0 & 0.0 & 0.0 & 6.1 & 6.1 & 1000.0 & 2.78 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1000.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1000.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1000.0 & 0.0 \\
55.2 & 12.3 & 6.1 & 6.1 & & &
\end{array}
$$

ICALMS NOT INCLUDED IN AVE., VAR. OR ST.DEV.)
SEC

$$
\begin{array}{ll}
0 \cdot \alpha 己 己 & 1 \cdot 9 \\
0 \cdot n & n \cdot 0
\end{array}
$$

$$
60^{*} 2-52
$$

$$
66 \cdot 1-\mathrm{GL} \cdot \mathrm{t}
$$

$$
\begin{aligned}
& \text { VARIANCE DF WAVE PERIDO: O •I SEC SO }
\end{aligned}
$$

WAVE GLMATOLOGY FOR FT FALEIGH N G FOF PERİO FGOM OI - 20 JUL 79
JISTPIBUTION TF SIG. HFIGHTIIN OSSEFVATIONS PER 1000 CESERVATIONS) AS A FUNCTION BF SIG. PEFIOD GOVOITION OSSERVATIONS: 156 CALM CONDITION OBSERVATIONS NOT INCLUDED:
h heuks

[^0]WAVE CLIMATOLOGY FOR FT RALEIGH N C FCR PERIOD FROM O5＝ 30 SEP 79
IISTRIBUTION DF SIG．HEIGHTGIN OBSERVATIONS PER 1000 CBSERVATIONS AS A FUNCTION OF SIG．PERIOD OATA OBTAINED FROM SET OF DIGITAL BOTTOM－MOUNTED PRESSURE TRANSDUCER RECORDS TOTALING 43 IS HCURS
$$
\text { วヨs } 6 \varepsilon * 0
$$
\[

$$
\begin{array}{lll}
0 * 0 & 0.0001 & 0 * 0 \\
0 * 0 & 0.0001 & 0 * 0 \\
0.0 & 0.0001 & 0 \%
\end{array}
$$
\]

$$
E 9^{\circ} ट t=\varepsilon 66 \quad 1 \cdot 9 t
$$

$$
60 \cdot 2
$$

$$
58 \cdot 190<29
$$

$$
99^{\circ}: 1 * I z t^{*}
$$ NON－CALM CONDITION OESERVATIONS： 152 CALM CENDITION GESERYATIONS NOT IMCLUDEC：

$$
4 e^{\circ} 1<\cdot \varepsilon z 己
$$

$$
000 \quad 1014 \quad 609 E
$$

$$
\begin{array}{lll}
0.0 & 1 * 1 t & 6 * 9 E \\
0.0001 & 0: 0001 & *: 65 \\
0.0 & 9.9 & S * 6 \varepsilon
\end{array}
$$

$$
0 * 0
$$

$$
0 \% 0
$$

$$
\begin{aligned}
& C M) \\
& 25-30 \\
& 13.2 \\
& 0.0 \\
& 65.8
\end{aligned}
$$

$$
78: 9
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0 \quad 0.0
$$

$$
\begin{array}{ll}
236.8 & 164.5 \\
717.1 & 881.6
\end{array}
$$

$$
\begin{aligned}
& -35 \\
& 0.0
\end{aligned}
$$

$$
0.0
$$

$$
0.6
$$

$$
39 \cdot 5
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
35-40
$$

$$
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
$$

$$
0.0
$$

$$
\begin{array}{r}
13.2 \\
6.6
\end{array}
$$

$$
6.6
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

$$
0.0
$$

VAR. OR ST.DEV.1
GEFORE ANALYSIS

$$
\begin{array}{r}
0-45 \\
0.0 \\
0.0 \\
0.0
\end{array}
$$

$$
0.0
$$

$$
0.0
$$

$$
6.6
$$

$$
0.0
$$

$$
0.0
$$

$$
\begin{gathered}
4.4 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0
\end{gathered}
$$

$$
\begin{aligned}
& \text { OF WAVE PERIOD: O. } \\
& \text { DEVIATICN OF WAVE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WAVE PERIDO: } 1: 8: \text { S } \\
& \text { OF WAVE PERIOD: } 0 .
\end{aligned}
$$

$$
\begin{array}{r}
\text { TOTAL } \\
223.7 \\
197.4 \\
256.6 \\
184.2 \\
85.5 \\
46.1 \\
6.6
\end{array}
$$

$$
\begin{aligned}
& E C \\
& 15 \\
& \text { PEF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FRD } \\
& \text { AVG }
\end{aligned}
$$

$$
1000.02 .91
$$

$$
\begin{aligned}
& \exists \supset N Y I 甘 \forall A \\
& \exists S V \& \exists A V
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

N

$$
0.0 \quad 4.8
$$

$$
\begin{array}{ll}
0.0 & 4.8 \\
0.0 & 0.0
\end{array}
$$ CALM CONDITION CBSERYATIONS NOT INCLUOED:

CUM PRD
TDTAL AVG C10.61.89 $985.6 \quad 2.60$ 990.4 2.78 $4.8 \quad 995.2 \quad 3.00$
$0.0 \quad 1000.0 \quad 0.0$ $38.5 \quad 0.0$ $30-35$
0.0 0.0
PER IOO 298.11 .28
442.31 .61 2e6.0 036.52 .11 $\begin{array}{ll}n & 0 \\ 2 & 0 \\ N & 0 \\ \cdots & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ N & 0 \\ 0 & 0 \\ N & 0 \\ -1 & \end{array}$ LE*E O.OOO1 8*

$$
\text { WAVE CLIMATOLGGY FOR FT RALEIGH NC FQA PERIOD FROM } 1 \text { - } 31 \text { OCT } 79
$$

CuRs 144.2 \square
∞
0
-

$$
16.9 \quad 22.8
$$ $45+\quad$ TOY

$0.0 \quad 29$ $\begin{array}{cc}45+ & \text { TOTAL } \\ 0.0 & 29 \mathrm{a} .1\end{array}$ 0.0 0.0 0.0
0.0 0.0
4.8 0.0 0.0 $0.0 \quad 0.0$ $\begin{array}{ll}2 * 8 * & 0 * 0 \\ 0=000 \tau & z=566 \\ 8 * * & 0=0\end{array}$ $40-45$
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
MNO
Mos

Mo | 0 | 0 | 0 |
| :--- | :--- | :--- |
| | \bullet | 0 | 0.0 0.0 0.0 0 0.0 0.0

0.0 0.0 0.0 THAT H

$$
05-10
$$

$$
\begin{array}{r}
10=15 \\
62.5 \\
57.7 \\
52.9 \\
43.3 \\
48.1 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
264.4 \\
586.5 \\
12.5
\end{array}
$$ $35-40$

4.8 5.6 0.0
48.1
961.5
32.6 $5-30$
4.8
0.0
4.8
57.7
4.8
4.8
0.0 $0.0 \quad 0.0$
 $20-25$
0.0
9.6
38.5
38.5
4.8
0.0
0.0
0.0
0.0
0.0
91.3
86.5
22.8

$$
\begin{aligned}
& \text { NON-CALM CONDITION OBSERVATIONS: } 2 O B \\
& \text { DATA OBTAINED FROM SET OF OIGITAL EOTTOM- }
\end{aligned}
$$

$$
\begin{array}{r}
15-20 \\
9.6 \\
62.5 \\
48.1 \\
19.2 \\
4.8 \\
14.4 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
158.7 \\
745.2 \\
16.9
\end{array}
$$

$$
5 * \angle \theta 1 \quad 8 \cdot 82
$$

$$
\begin{aligned}
& \pm \\
& \pm \\
& \pm
\end{aligned}
$$

$$
\begin{array}{ll}
0 & 0 \\
\& & 0 \\
\mathbf{N} & 0
\end{array}
$$

$$
\begin{array}{r}
\infty \\
+ \\
\hline+ \\
0
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

JISTRIBUTION OF

$$
\begin{aligned}
& 0 \\
& \mathbf{N} \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

PERIOD

$1.20-1.49$
$1.50-1.74$
$1.75-1.99$
$2.00-2.24$
$2.25-2.49$
$2.50-2.74$
$2.75-2.99$
$3.00-3.44$
$3.25-3.49$
$3.50+$
TOTAL
CUM. TJTAL
HT.AVG

OF SIG. HEIGHT(IN OESERVATIGNS PER 1000 OBSERVATIONS AS A FUNCTICN OF SIG PERIOD
6 HOURS

$$
\begin{array}{lll}
& \text { CUMA } & \text { PRD } \\
\text { OTAL } & \text { TOTAL } & \text { AVG } \\
21.9 & 321.9 & 1.27 \\
58.8 & 480.7 & 1.62 \\
54.5 & 635.2 & 1.88 \\
14.6 & e 49.6 & 2.12 \\
11.6 & 961.4 & 2.33 \\
30.0 & 591.4 & 2.54 \\
8.6 & 1000.0 & 2.88 \\
0.0 & 1000.0 & 0.0 \\
0.0 & 1000.0 & 0.0 \\
0.0 & 1000.0 & 0.0
\end{array}
$$

WAVE CLIMATOLOGY FOR FT RALEIGH N C FOR PERIOD FROM 1 - 31 DEC 79 DISTRIBUTION OF SIG. HEIGHT (IN OGSERVATIONS PER 1000 OBSERVATIONS) AS A FUNCTION OF SIG. PERIOD NON-CALM CONDITION OBSERVATIONS: 213 CALM CENDITION QESERVATIONS NOT INCLUDEC: 13
DATA OBTAINED FRCM SET OF CIGITAL BOTTOM-MOUNTED PRESSURE TRANSDUCER RECORDS TOTALING E4. 3 HCURS HEIGHT (CN)
CUN:
TOTAL AVG
AVG 394.41 .64
 868.52 .12
 85.2 0.0001 9* CE 0.01000 .00 .0 $0.0 \quad 1000.0 \quad 0.0$ $0.01000 .0 \quad 6.0$ 0.01000 .00 .0 VARIANCE OF WAVE PERIOD: 0.14 SEC SO
STANDARO DEVIATION OF VAVE PERIOD: 0.38 SEC (Calms not included in ave.. Var. or st.dev.)

Appendix C. Monthly wind stick-plots, wind-tides and time histories of H_{s} and T_{s}.

Time-series plots for all months of 1979 (except August) of Cape Hatteras winds, Fort Raleigh wave-site water levels (wind-tides), and H_{s} and T_{s} are included in this appendix as the next eleven figures. Vertical lines shown on some plots have been included to emphasize gaps in the time series where data were not collected; the time axis has been adjusted accordingly. The stick-plot vectors represent the direction that the wind is coming from; i.e. the tail of the vector would lie on the horizontal time line.

*

[^0]: u
 菏
 STANDARS DEVIATICN CF WAVE PERIGD: 0.36 (CALMS NTT INGLIDEE IN AVE., VAR, DG ST.OEV.)

